算是又开了一个新坑吧👍,但是这部分我不会写的特别细,有的部分就用对应的资料代替了,如果我自己写,估计也是差不多,索性就省略掉,记录主要的思路和重要的推导。

Still updating

提纲:

  • Decision Trees / CART
  • Bagging / Random Forest
  • Boosting / AdaBoosting
  • GBDT / XGB

资料:

Decision Tree

看这篇文章:https://aman.ai/cs229/decision-trees/,还有Canada小哥的视频:video

需要补充的点:

  1. 损失函数的解释:purity pdf
  2. 决策树的种类
  3. 创建树的训练过程

Different Decision Tree

different-decision-tree-algorithms-with-comparison-of-complexity-or-performance

https://qr.ae/pvSm8V

https://blog.csdn.net/yinyu19950811/article/details/89575462

Training Process

https://github.com/XuRui314/MIT_6.036_homework_zxr/blob/main/Tree_Based_AI.ipynb

https://blog.csdn.net/jiaoyangwm/article/details/79525237

Bagging

https://carbonati.github.io/posts/random-forests-from-scratch/

Boosting

GBDT

XGB